skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Bachtadse, V"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract The Earth is transitioning to a state unprecedented in human history. This transition poses a challenge for predicting the future, as climate models require testing and calibration with real‐world data from high greenhouse gas climates. Despite significant progress in climate modeling, changes in the precipitation remain highly uncertain. The Paleocene‐Eocene Thermal Maximum (PETM) was the warmest period of the Cenozoic Era, and thus serves as an analog for a hydrological cycle altered by extreme greenhouse gas warming. Here, we use paleosol‐based geochemical proxies to quantify changes in mean annual precipitation (MAP) during the PETM in the Uinta Basin, Utah. We find no change in MAP during this warming event. However, paleosol mass balance results track increased translocation of carbonates, increased clay illuviation, and increased accumulation of redox‐sensitive elements. These results, along with shifts in fluvial stratigraphy, provide evidence for increased intensity and intermittency of extreme precipitation events that may be related to changes in the transport direction, seasonality, and moisture transport capability of the North American Monsoon. Surprisingly, changes in fluvial stratigraphy, clay illuviuation, and redoximorphy continued for 105–106 years after the PETM, suggesting persistent changes in precipitation intensity despite a decrease in global temperature. These findings provide further support for an intensification of the hydrological cycle during and after the PETM, provide evidence for a decoupling between mean and extreme precipitation, and indicate the importance of multi‐proxy, regional studies for understanding the complexities of climate change. 
    more » « less
    Free, publicly-accessible full text available April 1, 2026